Reactions of thiobenzoylketene S, N-acetals with silyl enol ethers of cyclic ketones in the presence of desilylating reagents: formation and desulfurization of thienolactams

Jong Seok Lee, Dong Joon Lee, Bo Sung Kim and Kyongtae Kim*

School of Chemistry and Molecular Engineering, Seoul National University, 151-742, Korea
Received (in Cambridge, UK) 30th March 2001, Accepted 16th August 2001
First published as an Advance Article on the web 10th October 2001

Medium-sized thienolactams can be directly prepared from thiobenzoylketene S, N-acetals, $\operatorname{Hg}(\mathrm{OAc})_{2}$, and silyl enol ethers of cyclic ketones, and either TBAF or TASF. However, by adding either water or alcohol to the foregoing mixture, 3-methylamino-5-phenylthiophenes, in which the ω-position of long-chain alkanoic acids and alkanoic esters are bonded to C-2 of the thiophene ring, can be obtained albeit in low yields. Sequential treatment of the thienolactams with Raney nickel and Adam's catalyst results in completely reductive desulfurization of thienolactam molecules.

Introduction

Owing to the importance of lactams as starting materials for the preparation of a large range of antibacterial agents, methods of synthesis and interconversion of the functional group are of great significance to a large number of practicing organic chemists. Information about the synthesis of lactams may be found in numerous review articles. ${ }^{1}$ However, there are few known examples of methods for introducing a substituent α to the ring nitrogen of lactams larger than a seven-membered ring. That is, intramolecular cyclization of amino esters provides medium-sized lactams. ${ }^{2}$ The Beckmann rearrangement is used in the preparation of the desired lactams. ${ }^{3}$ The Schmidt reaction has been widely employed for the preparation of lactams from cyclic ketones. ${ }^{4}$ Ultraviolet and ultravioletvisible irradiation of a large variety of substituted amides would give lactams. ${ }^{5}$ Sodium peroxide oxidation of substituted benzothiazepinones and benzoxazepinones has produced the corresponding nine-membered benzothiazoninediones and benzoxazoninediones. ${ }^{6}$ Medium-sized keto lactams were synthesized by a three-atom condensative ring expansion of the related fused tricyclic oxaziridines. ${ }^{7}$

Recently we reported a new, versatile synthetic method for 2 -substituted 3 -alkylamino-5-arylthiophenes by treatment of thioaroylketene S, N-acetals 1 with enolizable compounds in the presence of $\mathrm{Hg}(\mathrm{OAc})_{2}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at rt. ${ }^{8}$ We tried to extend this methodology to monocyclic ketones in order to obtain ω-(2-thienyl)alkanoic acids $\mathbf{2}$ in a single step since compound 2-bearing chains longer than four carbon units have been achieved by the acylation of thiophene using ω-chloroalkanoyl chlorides in the presence of Lewis acid, followed by an appropriate transformation of the functional group(s). ${ }^{9}$ We have studied this possibility by employing cyclohexanone, decanone, dodecanone, and 5α-cholestan-3-one. We now report the results of our study of these reactions.

Results and discussion

(A) In the presence of desilylating reagents

Treatment of $\mathbf{1 a}\left(\mathrm{Ar}=\mathrm{Ph}, \mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{Me}\right)$ with $\mathrm{Hg}(\mathrm{OAc})_{2}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, followed by addition of cyclohexanone gave, however, 2-methyl-5-phenylisothiazol-3-one $\mathbf{3}$ as a major product (64%). It is known that compound $\mathbf{3}$ is formed in the absence of an active nucleophile. ${ }^{8}$

Since cyclohexanone did not participate as a nucleophile, the reaction with the trimethylsilyl enol ether of cyclohexanone was carried out. However, compound 3 was again isolated as a major product along with unknown mixtures. This result suggests that the silyl enol ether does not act as a nucleophile by itself without assistance from an activating agent. Therefore, tris(dimethylamino)(trimethylsilyl)sulfur difluoride (TASF), which is known to be a good desilylating reagent, ${ }^{10}$ was added to a stirred mixture of $\mathbf{1 a}, \mathrm{Hg}(\mathrm{OAc})_{2}$, and the trimethylsilyl enol ether of cyclohexanone. The mixture was stirred until no spot corresponding to $\mathbf{1 a}-$ mercury complex was observed on TLC. Unexpectedly the reaction mixture gave thienolactam $\mathbf{4 a}(n=4)$ in 30% yield (Scheme 1). Similarly, the reactions with the trimethylsilyl enol ethers of decanone and dodecanone under the same reaction conditions yielded the corresponding thienolactams $\mathbf{4 b}, \mathbf{c}$. To test this methodology for polycyclic ketones, a mixture of regioisomers 5 and $\mathbf{6}$, prepared by the reaction of 5α-cholestan-3-one with TMSCl ${ }^{11}$ whose ratio was determined to be 74:26 based on the intensities of the vinyl protons appearing at $\delta 4.76$ and 4.48 , respectively, was subjected to the same conditions (Scheme 2). Interestingly, only a single thienolactam, assigned to be $\mathbf{4 d}$, was isolated in 46% yield along with unknown mixtures. The absence of a product originating from 6 may be due to a severe steric hindrance arising from the interaction between $\mathbf{1 a}$-mercury complex and $\mathbf{6}$ to form the corresponding dihydrothiophene intermediate. ${ }^{8}$ Reaction times, yields, and mps are summarized in Table 1.
As an alternative desilylating agent, tetrabutylammonium fluoride (TBAF) ${ }^{12}$ was tried but it turned out to be inferior to TASF except for the reaction with the dodecanone derivative (entry 3). On the other hand, treatment with benzyltrimethyl-

Table 1 Reaction times, yields, and mps of thienolactams 4

Entry	Trimethylsilyl enol ether of	$\begin{aligned} & \text { Time }(t / \mathrm{min}) \\ & \text { Step A } \end{aligned}$	Time (t / h) Step B	Compd	Yield ${ }^{\text {a }}$ (\%)		$\begin{aligned} & \mathrm{Mp}_{\left(T /{ }^{\circ} \mathrm{C}\right)} \end{aligned}$
					TASF	TBAF	
1	Cyclohexanone	5	48	4a $(n=4)$	30	$28^{\text {b }}$	Liquid
2	Decanone	5	4	4b $(n=8)$	44	31	150-151 ${ }^{\text {c }}$
3	Dodecanone	5	5	$4 \mathrm{c}(\mathrm{n}=10)$	16	33	Liquid
4	5α-Cholestan-3-one	5	72	4d	46	25	201-203 ${ }^{\text {c }}$

${ }^{a}$ Isolated yields. ${ }^{b} 5$-(3-Methylamino-5-phenylthien-2-yl)pentanoic acid $9 \mathrm{a}(n=4, \mathrm{R}=\mathrm{H})(5 \%)$ was isolated. ${ }^{c}$ Recrystallized from a mixture of $\mathrm{Et}_{2} \mathrm{O}$ and n-hexane.

Scheme 1

4d

Scheme 2

ammonium fluoride hydrate (BTAF) ${ }^{13}$ gave $\mathbf{4 a}$ and $\mathbf{4 b}$ in 23 and 16% yield, respectively. Addition of BTAF, followed by use of molecular sieves ($4 \AA$) in order to remove the hydrate water, was not useful. Unchanged $1(28 \%)$ was recovered along with an unknown mixture. The results suggest that BTAF is not effective for the preparation of compounds 4. Yields obtained when TBAF was used are summarized in Table 1.

The formation of medium-size lactams $4 \mathrm{a}-\mathbf{d}$ suggests that the corresponding intermediate 7, proposed for the formation of thiophene derivatives from $1, \mathrm{Hg}(\mathrm{OAc})_{2}$, and enolizable
ketones, ${ }^{8}$ is attacked by a new nucleophile in the solvent to give a reactive intermediate (Scheme 3). Intramolecular nucleophilic

Scheme 3
attack by the methylamino group at $\mathrm{C}-3$ of the thiophene ring on the nucleophilic center of the reactive intermediate should give 4. One can envisage acetic acid generated from $\mathrm{Hg}(\mathrm{OAc})_{2}$ as a possible nucleophile. Acetolysis of 7 would give an anhydride 8, which undergoes intramolecular cyclization to give 4.

(B) Trapping of intermediate $\mathbf{7}$ with hydroxy nucleophiles

Since lactams $\mathbf{4}$ were envisaged to be formed via a nucleophilic attack of acetic acid on the intermediate 7 during a prolonged reaction time, the stirring time, following the addition of desilylating reagent, was reduced to 1 h , and then hydroxy nucleophiles, i.e., $\mathrm{EtOH}, \mathrm{MeOH}$, and water, were added to trap the intermediate 7 (Scheme 4). From the reaction mixture we isolated ω-(2-thieno)alkanoic acids or their esters, depending on the hydroxy nucleophiles. The results are summarized in Table 2.

Although yields of compound $\mathbf{9}$ and $\mathbf{1 0}$ are not satisfactory, one can directly obtain ω-(2-thieno)alkanoic acids and their esters by this methodology. When the intermediate $7(n=4)$ was quenched with phenylmethanethiol, thioester 11 (42\%) was obtained as a major product, whereas quenching with n-propylamine resulted only in $9 \mathbf{a}(29 \%)$, presumably due to the involvement of moisture in wet n-propylamine. Similar treatment with morpholine in toluene for 10 h at reflux afforded thienolactam $\mathbf{4 a}(n=4)(25 \%)$ and $\mathbf{9 a}(6 \%)$ in addition to a trace amount of amide $\mathbf{1 2}$ whose structure was assigned based on its mass number, $m / z=385$, equal to its relative molecular mass. Therefore the intermediate 7 may be unsuitable for the preparation of thiophenes having an alkanamide moiety at C-2.

(C) Reductive desulfurization

Destruction of the thiophene ring by Raney nickel is known to be one of the major methods for increasing carbon chains by four carbon units, from which the thiophene derivatives are transformed into a plethora of open-chain products not easily accessible by other routes. ${ }^{14}$ In fact, oximation of 6,7dihydrobenzo $[b]$ thiophen $-4(5 H)$-ones, followed by Beckmann rearrangement, gave C -substituted ξ-thienolactams which underwent desulfurization by Raney nickel to give the

Table 2 Synthesis of ω-(2-thieno)alkanoic acids 9a, 9e,f, and 10a and ω-(2-thieno)alkanoic esters 9b-d, 9g, and 10b

Entry	Trimethylsilyl enol ether of ketone	$\begin{aligned} & \text { Time }(t / \mathrm{min}) \\ & \text { Step A }^{a} \end{aligned}$	$\begin{aligned} & \operatorname{Time}(t / \mathrm{h}) \\ & \text { Step } \mathrm{B}^{b} \end{aligned}$	$\begin{aligned} & \text { Time }(t / \mathrm{h}) \\ & {\text { Step } \mathrm{C}^{c}}^{\text {a }} \end{aligned}$	Temp.	R	Compd	$\begin{aligned} & \text { Yield }^{d} \\ & (\%) \end{aligned}$
1	Cyclohexanone	5	1	1	rt	H	9a ($n=4$)	34
2	Cyclohexanone	5	1	3	Reflux	Et	9b ($n=4$)	44
3	Cycloheptanone	3	1	3	rt	Et	9c ($n=5$)	39
4	Cyclooctanone	3	1	3	rt	Et	9d ($n=6$)	36
5	Cyclododecanone	5	1	5	rt	H	9e $(n=10)$	26
6	Cyclopentadecanone	5	2	4	rt	H	9f $(n=13)$	31
7	Cyclopentadecanone	10	3	0.5	Reflux	Me	9g $(n=13)$	32
8	1-Tetralone	10	4	0.5	rt	H	10a	46
9	1-Tetralone	10	4	0.5	rt	Me	10b	56

${ }^{a}$ Stirring time after silyl enol ether was added to the mixture of $\mathbf{2 a}$ and $\mathrm{Hg}(\mathrm{OAc}) \mathbf{2}^{2}{ }^{b}$ Stirring time after TBAF was added. ${ }^{c}$ Stirring time after nucleophile was added. ${ }^{d}$ Isolated yields.

Scheme 4

11

12
corresponding ξ-alkyl ξ-enantholactams. This methodology for ξ-enantholactams and ε-caprolactams was extensively studied by Shalavina and co-workers. ${ }^{15}$ However, no-larger than
eight-membered lactams have been reported by this method. ${ }^{14 c}$ Similar treatment of compound $\mathbf{4 a}(n=4)$ with Raney nickel in MeOH for 24 h , however, gave 1-methyl-8-(2-phenylethyl-idene)azocin-2-one 13a $(n=4)$ and 1-methyl-8-(2-phenylethyl)-azocin-2-one 14a $(n=4)$ in 23 and 42% yield, respectively (Scheme 5). Compounds 13a and 14a were separated by chromatography.

The structures of compounds 13a and 14a were determined based on spectroscopic and analytical data. In particular, 2D NMR techniques are informative regarding the position of the olefinic double bond of compound 13a. Since compound 4a was incompletely reduced by Raney Ni to give a mixture of compounds 13a and 14a, the mixture was isolated by chromatography and subsequent treatment of the mixture with a catalytic amount of $\mathrm{PtO}_{2}(3 \mathrm{wt} \%)$ in $\mathrm{HOAc}{ }^{15}$ gave the 8-(2cyclohexylethyl)heptanolactam (15a, $n=4$) (58%). Similar treatment of compounds $\mathbf{4 b - d}$ with Raney nickel and PtO_{2} in sequence under the same conditions gave compounds $\mathbf{1 5 b}_{\mathbf{b}}$-d in moderate to good yields. To the best of our knowledge, this is the first example of the synthesis of larger-than eightmembered lactams bearing a 2 -cyclohexylethyl group at the carbon α to the ring nitrogen. Direct treatment of $\mathbf{4 a}$ with PtO_{2} for 72 h under the same conditions did not give reduced products, with almost quantitative recovery of starting lactam. Reaction times, and yields of lactams $\mathbf{1 5}$ are summarized in Table 3.

Apart from the ${ }^{1} \mathrm{H}$ NMR spectroscopic data for $\mathbf{1 5 a}$, the ${ }^{1} \mathrm{H}$ NMR spectra of compounds $\mathbf{1 5 b}, \mathbf{1 5 c}$ and $\mathbf{1 5 d}$ show that each compound consists of two isomers, presumably conformational isomers in view of reports ${ }^{14 f}$ showing undecanolactam is present only as a trans isomer having two different ring conformations. The ratio of the isomers of compound $\mathbf{1 5 b}$ were determined to be $1.43: 1$, based on the intensities of $\mathrm{N}-\mathrm{CH}_{3}$ ($\delta 2.72,2.79$) and methine ($\delta 3.74-3.76,4.71-4.75$) proton

Table 3 Reaction times and yields of lactams 15

	Time $(t /$ day $)$				
	Thienolactam	Step A	Step B	Compd	Yield a $(\%)$
$\mathbf{4 a} \quad(n=4)$	1	1	$\mathbf{1 5 a}$	58	
4b $\quad(n=8)$	1	1	$\mathbf{1 5 b}$	66	
4c $\quad(n=10)$	1	1	$\mathbf{1 5 c}$	43	
4d		1	4	$\mathbf{1 5 d}$	81
${ }^{a}$ Isolated yields.					

signals. Similarly, that of compound $\mathbf{1 5 c}$ was $1.16: 1$, which was determined based on those of $\mathrm{N}-\mathrm{CH}_{3}(\delta 2.76,2.70)$ and methine ($\delta 4.66-4.73,3.71-3.77$) proton signals. That of compound 15d was $2.36: 1$, which was determined based on those of $\mathrm{N}-\mathrm{CH}_{3}$ ($\delta 2.95,2.96$) and methine ($\delta 5.21-5.25,4.90-4.91$) proton signals. However, more information is needed to clearly assign the spectral data of compounds $\mathbf{1 5 b} \mathbf{b}$.

Experimental

The ${ }^{1} \mathrm{H}$ NMR spectra were recorded at 300,500 , or 600 MHz in CDCl_{3} solution containing tetramethylsilane as internal standard: J-values are given in Hz . IR spectra were recorded in KBr or thin-film samples on KBr plates. Mass spectra were obtained by electron impact at 70 eV . Elemental analyses were determined by the National Center for InterUniversity Research Facilities, Seoul National University. Column chromatography was performed using silica gel (Merck, 230-400 mesh ASTM), unless otherwise stated. Mps were determined on a Fisher-Johns melting-point apparatus and are uncorrected. Dichloromethane was pre-dried over calcium hydride. 1-Methylamino-1-methylsulfanyl-3-phenyl-3thioxopropene 1a was prepared according to the documented procedure. ${ }^{8}$

General procedure for the synthesis of thienolactams 4a-d

(i) In the presence of tris(dimethylamino)(trimethylsily)sulfur difluoride (TASF). To a mixture of compound 1a (0.224 $0.448 \mathrm{mmol})$ and $\mathrm{Hg}(\mathrm{OAc})_{2}(0.314-0.627 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (8-10 cm^{3}) at rt was added the trimethylsilyl enol ether of a cyclic ketone ($0.296-0.672 \mathrm{mmol}$). The mixture was stirred for 5 min under argon atmosphere, followed by addition of TASF ($0.269-0.672 \mathrm{mmol}$). The mixture was stirred for an additional time (refer to Table 1) until no spot corresponding to the complex formed from $\mathbf{1 a}$ and $\mathrm{Hg}(\mathrm{OAc})_{2}$ was observed on TLC ($R_{\mathrm{f}}=0, n$-hexane-EtOAc $4: 1$). After the solid formed was filtered off, the filtrate was sequentially washed with 20% aq. NaHCO_{3} and brine, and dried over MgSO_{4}. After removal of the solvent in vacuo, the residue was chromatographed on a silica gel $(1 \times 30 \mathrm{~cm})$ using a mixture of EtOAc and n-hexane ($2: 1$) to give a compound $\mathbf{4 a - d}$.
4-Methyl-2-phenyl-6,7,8,9-tetrahydrothieno[3,2-b]azocin$5(4 H)$-one $4 a$. In accordance with the above general procedure, the residue obtained from a stirred solution of a mixture of compound 1a ($50 \mathrm{mg}, 0.224 \mathrm{mmol}$), $\mathrm{Hg}(\mathrm{OAc})_{2}(100 \mathrm{mg}, 0.314$ mmol), (cyclohexen-1-yloxy)trimethylsilane ($46 \mathrm{mg}, 0.269$ mmol), and TASF ($74 \mathrm{mg}, 0.269 \mathrm{mmol}$) was chromatographed to give title compound $\mathbf{4 a}(18 \mathrm{mg}, 30 \%)$ as a colorless liquid (Found: C, 70.7; H, 6.3; N, 5.2; S, 11.85. $\mathrm{C}_{16} \mathrm{H}_{17}$ NOS requires C, 70.8; H, 6.3; N, 5.2; S,11.8\%); $v_{\text {max }}$ (neat)/ $/ \mathrm{cm}^{-1} 2920,1656$, $1558,1437,1364,1078$ and $757 ; \delta_{\mathrm{H}}\left(600 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.38$ (1 H , ddd, $J 25.9,13.0,4.3, \mathrm{H}-8$), 1.69-1.82 ($1 \mathrm{H}, \mathrm{m}, \mathrm{H}-7$), $1.97-2.06\left(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-7\right.$ and H-8), $2.20\left(1 \mathrm{H}, \mathrm{t}, J 12.2, \mathrm{COCH}_{2}\right)$, 2.42-2.45 ($1 \mathrm{H}, \mathrm{m}, \mathrm{COCH}_{2}$), 2.45-2.51 ($\left.1 \mathrm{H}, \mathrm{m}, \mathrm{H}-9\right), 2.95(1 \mathrm{H}$, dd, $J 14.8,6.8, \mathrm{H}-9), 3.29\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 7.06(1 \mathrm{H}, \mathrm{s}$, thienyl), 7.29-7.31 ($1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), 7.37-7.40 ($2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$) and 7.53$7.74(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{c}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 25.6(\mathrm{C}-7), 26.2(\mathrm{C}-9)$,
28.6 (C-8), 33.5 (C-6), $35.7\left(\mathrm{NCH}_{3}\right), 119.2(\mathrm{C}-3), 125.2,127.8$, 129.0, 133.7 (C-2), 135.9 (C-9a), 139.2 (C-3a), 140.4 and 174.7 ($\mathrm{C}=\mathrm{O}$).

4-Methyl-2-phenyl-6,7,8,9, 10,11,12,13-octahydrothieno[3,2-b]-azacyclododecan-5(4H)-one 4b. In accordance with the above general procedure, the residue obtained from a stirred solution of a mixture of compound $\mathbf{1 a}(50 \mathrm{mg}, 0.224 \mathrm{mmol}), \mathrm{Hg}(\mathrm{OAc})_{2}$ ($100 \mathrm{mg}, 0.314 \mathrm{mmol}$), (cyclodecen-1-yloxy)trimethylsilane ($61 \mathrm{mg}, 0.269 \mathrm{mmol}$), and TASF ($74 \mathrm{mg}, 0.269 \mathrm{mmol}$) was chromatographed to give title compound 4 b ($32 \mathrm{mg}, 44 \%$), mp $150-151{ }^{\circ} \mathrm{C}$ (from $\mathrm{Et}_{2} \mathrm{O}-n$-hexane) (Found: C, $73.6 ; \mathrm{H}$, 7.7; N, 4.3; S, 9.8. $\mathrm{C}_{20} \mathrm{H}_{25} \mathrm{NOS}$ requires C, 73.35; H, 7.7; N, 4.3; S, 9.8%); $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 2928,1657,1440,1386$ and 756 ; $\delta_{\mathrm{H}}\left(600 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ 0.93-0.96 ($1 \mathrm{H}, \mathrm{m}$), 1.13-1.15 ($1 \mathrm{H}, \mathrm{m}$), $1.25-1.28(2 \mathrm{H}, \mathrm{m}), 1.31-1.41(3 \mathrm{H}, \mathrm{m}), 1.42-1.51(2 \mathrm{H}, \mathrm{m})$, 1.75-1.86 ($2 \mathrm{H}, \mathrm{m}$), 1.97-2.03 ($1 \mathrm{H}, \mathrm{m}$), 2.11-2.16 ($1 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{COCH}_{2}\right), 2.35\left(1 \mathrm{H}, \mathrm{ddd}, J 16.2,10.5,3.4, \mathrm{COCH}_{2}\right), 2.73(1 \mathrm{H}$, $\mathrm{dt}, J 15.1,4.4, \mathrm{H}-13), 2.88-2.93(1 \mathrm{H}$, ddd, $J 15.4,12.0,4.3$, $\mathrm{H}-13), 3.22\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 6.94(1 \mathrm{H}, \mathrm{s}$, thienyl), $7.28-7.30$ $(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.36-7.39(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and 7.54-7.56 $(2 \mathrm{H}$, $\mathrm{m}, \mathrm{ArH}) ; \delta_{\mathrm{c}}\left(75 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 24.4,24.5,25.3,25.8,26.7$, 27.4, 29.4, $32.1(\mathrm{C}-6), 36.4\left(\mathrm{NCH}_{3}\right), 122.0(\mathrm{C}-3), 125.1,127.8$, 128.9, 133.7 (C-2), 139.2 (C-13a), 139.5 (C-3a), 140.6 and 174.3 ($\mathrm{C}=\mathrm{O}$).

4-Methyl-2-phenyl-6,7,8,9,10,11,12,13,14,15-decahydrothieno-[3,2-b]azacyclotetradecan-5(4H)-one 4c. In accordance with the above general procedure, the residue obtained from a stirred solution of a mixture of compound $\mathbf{1 a}(50 \mathrm{mg}, 0.224 \mathrm{mmol}$), $\mathrm{Hg}(\mathrm{OAc})_{2}(100 \mathrm{mg}, 0.314 \mathrm{mmol})$, (cyclododec-1-enyloxy)trimethylsilane ($68 \mathrm{mg}, 0.269 \mathrm{mmol}$), and TASF (74 mg , 0.269 mmol) was chromatographed to give title compound $\mathbf{4 c}$ ($13 \mathrm{mg}, 16 \%$) as a colorless liquid (Found: C, $74.4 ; \mathrm{H}, 8.3 ; \mathrm{N}$, 4.0; S, 9.0. $\mathrm{C}_{22} \mathrm{H}_{29}$ NOS requires C, 74.3; H, 8.2; N, 3.9; S, $9.0 \%) ; v_{\text {max }}$ (neat) $/ \mathrm{cm}^{-1} 2928,1656,1435,1387$ and $755 ; \delta_{\mathrm{H}}(600$ $\mathrm{MHz} ; \mathrm{CDCl}_{3}$) $1.21-1.25(6 \mathrm{H}, \mathrm{m}), 1.27-1.36(3 \mathrm{H}, \mathrm{m}), 1.37-1.42$ $(4 \mathrm{H}, \mathrm{m}), 1.49-1.55(1 \mathrm{H}, \mathrm{m}), 1.71-1.79(1 \mathrm{H}, \mathrm{m}), 1.82-1.89$ $(1 \mathrm{H}, \mathrm{m}), 2.10\left(1 \mathrm{H}, \mathrm{dt}, J 15.7,6.5, \mathrm{COCH}_{2}\right), 2.28-2.34(1 \mathrm{H}$, $\mathrm{m}, \mathrm{COCH}_{2}$), $2.67(1 \mathrm{H}, \mathrm{dt}, J 15.3,6.9, \mathrm{H}-15), 2.79-2.84(1 \mathrm{H}, \mathrm{m}$, $\mathrm{H}-15), 3.20\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 7.01(1 \mathrm{H}, \mathrm{s}$, thienyl), $7.28-7.30$ $(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.37-7.39(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $7.51-7.55(2 \mathrm{H}, \mathrm{m}$, ArH).

Thienolactam 4d. In accordance with the above general procedure, the residue obtained from a stirred solution of a mixture of compound $\mathbf{1 a}(100 \mathrm{mg}, 0.448 \mathrm{mmol}), \mathrm{Hg}(\mathrm{OAc})_{2}(200$ $\mathrm{mg}, 0.627 \mathrm{mmol}$), [5α-cholest-2(3)-en-3-yloxy]trimethylsilane $(4.11 \mathrm{mg}, 0.895 \mathrm{mmol})$, which is a mixture of regioisomers 5 and 6, and TASF ($185 \mathrm{mg}, 0.672 \mathrm{mmol}$) was chromatographed to give title compound $\mathbf{4 d}(115 \mathrm{mg}, 46 \%)$ as a white solid, mp 201-203 ${ }^{\circ} \mathrm{C}$ (from $\mathrm{Et}_{2} \mathrm{O}-n$-hexane); $v_{\max }$ (neat) $/ \mathrm{cm}^{-1} 2935,1654$, 1458,752 and $726 ; \delta_{\mathrm{H}}\left(600 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.69\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right)$, $0.77\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 0.86\left(3 \mathrm{H}, \mathrm{d}, J 2.9, \mathrm{CH}_{3}\right), 0.87(3 \mathrm{H}, \mathrm{d}, J 2.9$, $\left.\mathrm{CH}_{3}\right), 0.91\left(3 \mathrm{H}, \mathrm{d}, J 6.5, \mathrm{CH}_{3}\right), 1.01-1.04(5 \mathrm{H}, \mathrm{m}), 1.09-1.14$ $(7 \mathrm{H}, \mathrm{m}), 1.50-1.55(1 \mathrm{H}, \mathrm{m}), 1.57-1.62(2 \mathrm{H}, \mathrm{m}), 1.62-1.66$ $(2 \mathrm{H}, \mathrm{m}), 1.69-1.74(1 \mathrm{H}, \mathrm{m}), 1.79-1.85(2 \mathrm{H}, \mathrm{m}), 2.02-2.05$ $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{COCH}_{2}\right), 2.23\left(1 \mathrm{H}, \mathrm{d}, J 14.7, \mathrm{COCH}_{2}\right), 2.56(1 \mathrm{H}, \mathrm{dd}$, $J 15.2,10.4, \mathrm{H}-9), 3.09(1 \mathrm{H}, \mathrm{d}, J 14.7, \mathrm{H}-9), 3.29(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{NCH}_{3}\right), 7.07(1 \mathrm{H}, \mathrm{s}$, thienyl), $7.28-7.30(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.37-$ $7.39(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $7.54-7.57(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$; $\delta_{\mathrm{c}}(75 \mathrm{MHz}$; CDCl_{3}) 12.2, 13.1, 18.6, 22.2, 22.6, 22.8, 23.8, 24.2, 28.0, 28.3, $32.0,32.7,35.5,35.7,35.8,36.1,36.9,37.6,37.8,39.5,40.1$, 42.4, 48.6, 52.3, 56.1, 56.7, 118.7 (C-3), 125.2, 127.8, 129.0, 131.8 (C-2), 133.7 (C-9a), 140.2 (C-3a), 140.6 and 174.6 (C=O); m / z HRMS (FAB) Calc. for $\mathrm{C}_{37} \mathrm{H}_{53}$ NOS: $[M+\mathrm{H}] ; 560.3926$. Found: $m / z, 560.3932$.
(ii) In the presence of tetrabutylammonium fluoride (TBAF). The reactions were carried out according to the general procedure described in (i) except for using TBAF in place of TASF. Exactly the same amounts of reactants for each reaction were used. Yields of $\mathbf{4 a - d}$ are listed in Table 1.
(iii) In the presence of benzyltrimethylammonium fluoride hydrate (BTAF). (A) The reaction was carried out using BTAF ($55 \mathrm{mg}, 0.320 \mathrm{mmol}$) in place of TASF according to the procedure described in (i). Exactly the same amounts of reactants for each reaction were used. Compounds $\mathbf{4 a}(16 \mathrm{mg}, 26 \%)$ and 4b ($20 \mathrm{mg}, 27 \%$) were obtained.
(B) The reaction was carried out in the presence of BTAF ($55 \mathrm{mg}, 0.320 \mathrm{mmol}$) and molecular sieves ($4 \AA$) (500 mg) according to the procedure described in (i). However, compound $\mathbf{1 a}$ ($14 \mathrm{mg}, 28 \%$ recovery) along with unknown mixtures were obtained.

General procedure for the synthesis of ω-(2-thieno)alkanoic acids $9 \mathrm{a}, 9 \mathrm{e}, \mathrm{f}$ and 10 a and their esters $9 \mathrm{~b}-\mathrm{d}, 9 \mathrm{~g}$ and 10b
To a mixture of $\mathbf{1 a}(0.224 \mathrm{mmol})$ and $\mathrm{Hg}(\mathrm{OAc})_{2}(0.314-0.317$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(8 \mathrm{~cm}^{3}\right)$ at rt was added the trimethylsilyl enol ether of a cyclic ketone ($0.260-0.288 \mathrm{mmol}$). The mixture was stirred for an appropriate time ($3-10 \mathrm{~min}$), followed by addition of TBAF ($0.245-0.275 \mathrm{mmol}$), which was stirred for an additional time ($1-3 \mathrm{~h}$). Subsequent addition of water $\left(5 \mathrm{~cm}^{3}\right)$ or alcohol $\left(5 \mathrm{~cm}^{3}\right)$ gave a mixture, which was stirred for an additional time $(0.5-5 \mathrm{~h})$ and worked up as described in (i) of the general procedure for the synthesis of compounds 4 . The residue was chromatographed ($1.5 \times 15 \mathrm{~cm}$) using a mixture of EtOAc and n-hexane ($1: 4$) to give compounds 9 and $\mathbf{1 0}$. Consult Table 2 for the reaction time and temperature.

5-[2-(3-Methylamino-5-phenyl)thieno]pentanoic acid 9a. In accordance with the above general procedure, the residue obtained from a stirred solution of a mixture of compound 1a ($50 \mathrm{mg}, 0.224 \mathrm{mmol}), \mathrm{Hg}(\mathrm{OAc})_{2}(101 \mathrm{mg}, 0.317 \mathrm{mmol})$, (cyclohexen-1-yloxy)trimethylsilane ($49 \mathrm{mg}, 0.288 \mathrm{mmol}$) and TBAF ($72 \mathrm{mg}, 0.275 \mathrm{mmol}$) was chromatographed to give title compound $\mathbf{9 a}(22 \mathrm{mg}, 34 \%$) as a pale yellow liquid (Found: C, 66.4; $\mathrm{H}, 6.6 ; \mathrm{N}, 4.9 ; \mathrm{S}, 11.0 . \mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}_{2} \mathrm{~S}$ requires C, $66.4 ; \mathrm{H}$, 6.6; N, 4.8; S, 11.1\%); $v_{\text {max }}$ (neat) $/ \mathrm{cm}^{-1} 2928,1706$ and 1568 ; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.67-1.74\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2}\right), 2.40(2 \mathrm{H}, \mathrm{t}$, $\left.J 7.1, \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}\right), 2.62\left[2 \mathrm{H}, \mathrm{t}, J 7.1, \mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CO}_{2} \mathrm{H}\right], 2.91$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 6.96(1 \mathrm{H}, \mathrm{s}$, thienyl), $7.21-7.24(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$, 7.30-7.35 ($2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$) and 7.52-7.55 ($2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$).

Ethyl 5-[2-(3-methylamino-5-phenyl)thieno]pentanoate 9b. In accordance with the above general procedure, the residue obtained from a stirred solution of a mixture of compound 1a $(50 \mathrm{mg}, 0.225 \mathrm{mmol}), \mathrm{Hg}(\mathrm{OAc})_{2}(100 \mathrm{mg}, 0.314 \mathrm{mmol})$, (cyclohexen-1-yloxy)trimethylsilane ($46 \mathrm{mg}, 0.270 \mathrm{mmol}$) and TBAF ($71 \mathrm{mg}, 0.271 \mathrm{mmol}$) and EtOH ($5 \mathrm{~cm}^{3}$) was chromatographed to give title compound $9 \mathbf{~ b}(30 \mathrm{mg}, 44 \%)$ as a yellow liquid (Found: C, 68.2; H, 7.3; N, 4.4; S, 10.0. $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{NO}_{2} \mathrm{~S}$ requires $\mathrm{C}, 68.1 ; \mathrm{H}, 7.3 ; \mathrm{N}, 4.4 ; \mathrm{S}, 10.1 \%$); $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 3384$, 2928, 1726, 1568, 1388, 1178 and 755; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $1.25\left(3 \mathrm{H}, \mathrm{t}, J 7.1, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.67-1.74\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2}\right), 2.34$ $\left(2 \mathrm{H}, \mathrm{t}, J 7.1, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2}\right), 2.60\left[2 \mathrm{H}, \mathrm{t}, J 7.1, \mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CO}\right]$, $2.91\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 3.02(1 \mathrm{H}, \mathrm{br}, \mathrm{s}, \mathrm{NH}), 4.12(2 \mathrm{H}, \mathrm{q}, J 7.1$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 6.95(1 \mathrm{H}, \mathrm{s}$, thienyl), 7.21-7.24 ($1 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$, 7.0-7.35 ($2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$) and 7.52-7.55 ($2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$).

Ethyl 6-[2-(3-methylamino-5-phenyl)thieno]hexanoate 9c. In accordance with the above general procedure, the residue obtained from a stirred solution of a mixture of compound 1a ($52 \mathrm{mg}, 0.234 \mathrm{mmol}$), $\mathrm{Hg}(\mathrm{OAc})_{2}(100 \mathrm{mg}, 0.314 \mathrm{mmol})$, (cyclohepten-1-yloxy)trimethylsilane ($46 \mathrm{mg}, 0.250 \mathrm{mmol}$) and TBAF ($67 \mathrm{mg}, 0.256 \mathrm{mmol}$) and EtOH ($3 \mathrm{~cm}^{3}$) was chromatographed to give title compound 9 c ($30 \mathrm{mg}, 39 \%$) as a yellow liquid (Found: C, 68.8; H, 7.6; N, 4.3; S, 9.65. $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{NO}_{2} \mathrm{~S}$ requires $\mathrm{C}, 68.85 ; \mathrm{H}, 7.6 ; \mathrm{N}, 4.2 ; \mathrm{S}, 9.7 \%$); $v_{\text {max }}$ (neat) $/ \mathrm{cm}^{-1} 3384$, 2929, 1725, 1568, 1388, 1178 and 755; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $1.25\left(3 \mathrm{H}, \mathrm{t}, J 7.1, \mathrm{CH}_{3}\right), 1.42-1.45\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.62-1.66$ $\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2}\right), 2.30\left(2 \mathrm{H}, \mathrm{t}, J 7.1, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2}\right), 2.58[2 \mathrm{H}$,
$\left.\mathrm{t}, J 7.1, \mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{4}\right], 2.91\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 4.12(2 \mathrm{H}, \mathrm{q}, J 7.1$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 6.95(1 \mathrm{H}, \mathrm{s}$, thienyl), $7.21-7.24(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.30-$ $7.35(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $7.52-7.55(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$.

Ethyl 7-[2-(3-methylamino-5-phenyl)thieno]heptanoate 9d. In accordance with the above general procedure, the residue obtained from a stirred solution of a mixture of compound 1a ($48 \mathrm{mg}, 0.216 \mathrm{mmol}$), $\mathrm{Hg}(\mathrm{OAc})_{2}(99 \mathrm{mg}, 0.311 \mathrm{mmol})$, (cycloocten-1-yloxy)trimethylsilane ($50 \mathrm{mg}, 0.252 \mathrm{mmol}$) and TBAF ($70 \mathrm{mg}, 0.268 \mathrm{mmol}$) and EtOH ($3 \mathrm{~cm}^{3}$) was chromatographed to give title compound $9 \mathbf{d}(27 \mathrm{mg}, 36 \%)$ as a yellow liquid (Found: C, 69.50; H, 7.9; N, 4.1; S, 9.2. $\mathrm{C}_{20} \mathrm{H}_{27} \mathrm{NO}_{2} \mathrm{~S}$ requires C, $69.5 ; \mathrm{H}, 7.9 ; \mathrm{N}, 4.05 ; \mathrm{S}, 9.3 \%$); $v_{\text {max }}$ (neat) $/ \mathrm{cm}^{-1} 3384$, $2929,1725,1568,1388,1178$ and $755 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $1.25\left(3 \mathrm{H}, \mathrm{t}, J 7.1, \mathrm{CH}_{3}\right), 1.38-1.42\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2}\right), 1.62-1.66$ $\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2}\right), 2.30\left(2 \mathrm{H}, \mathrm{t}, J 7.1, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2}\right), 2.58[2 \mathrm{H}$, $\left.\mathrm{t}, J 7.1, \mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{5}\right], 2.92\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 4.13(2 \mathrm{H}, \mathrm{q}, J 7.1$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 6.95(1 \mathrm{H}, \mathrm{s}$, thienyl), $7.21-7.24(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.30-$ $7.35(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $7.52-7.55(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$.

11-[2-(3-Methylamino-5-phenyl)thieno]undecanoic acid 9e. In accordance with the above general procedure, the residue obtained from a stirred solution of a mixture of compound 1a $(50 \mathrm{mg}, 0.224 \mathrm{mmol}), \mathrm{Hg}(\mathrm{OAc})_{2}(100 \mathrm{mg}, 0.314 \mathrm{mmol})$, (cyclododec-1-enyloxy)trimethylsilane ($68 \mathrm{mg}, 0.267 \mathrm{mmol}$) and TBAF ($59 \mathrm{mg}, 0.226 \mathrm{mmol}$) and water $\left(1 \mathrm{~cm}^{3}\right)$ was chromatographed to give title compound $9 \mathbf{e}(22 \mathrm{mg}, 26 \%)$ as a yellow liquid (Found: C, 70.8; H, 8.4; N, 3.7; S, 8.5. $\mathrm{C}_{22} \mathrm{H}_{31} \mathrm{NO}_{2} \mathrm{~S}$ requires C, $70.7 ; \mathrm{H}, 8.4 ; \mathrm{N}, 3.75 ; \mathrm{S}, 8.6 \%$); $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 2920$, $1700,1586,1453$ and $755 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.24-1.37$ (12 $\left.\mathrm{H}, \mathrm{m}, 6 \times \mathrm{CH}_{2}\right), 1.61-1.65\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2}\right), 2.35(2 \mathrm{H}, \mathrm{t}, J 7.5$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2}\right), 2.59\left[2 \mathrm{H}, \mathrm{t}, J 7.5, \mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{9}\right], 2.92(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{NCH}_{3}\right), 6.97(1 \mathrm{H}, \mathrm{s}$, thienyl), $7.21-7.26(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.30-$ $7.36(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and 7.53-7.56(2 H, m, ArH).

14-[2-(3-Methylamino-5-phenyl)thieno]tetradecanoic acid 9f. In accordance with the above general procedure, the residue obtained from a stirred solution of a mixture of compound 1a ($50 \mathrm{mg}, 0.224 \mathrm{mmol}), \mathrm{Hg}(\mathrm{OAc})_{2}(100 \mathrm{mg}, 0.314 \mathrm{mmol})$, (cyclopentadec-1-enyloxy)trimethylsilane ($77 \mathrm{mg}, 0.260 \mathrm{mmol}$) and TBAF ($64 \mathrm{mg}, 0.245 \mathrm{mmol}$) and water $\left(1 \mathrm{~cm}^{3}\right)$ was chromatographed to give title compound $9 \mathrm{f}(29 \mathrm{mg}, 31 \%)$ as a yellow liquid (Found: C, 72.2; H, 9.0; N, 3.3; S, 7.8. $\mathrm{C}_{25} \mathrm{H}_{37} \mathrm{NO}_{2} \mathrm{~S}$ requires C, $72.2 ; \mathrm{H}, 9.0 ; \mathrm{N}, 3.4 ; \mathrm{S}, 7.7 \%$); $v_{\max }($ neat $) / \mathrm{cm}^{-1} 2920$, $1698,1585,1453$ and $755 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ 1.23-1.38 (18 $\left.\mathrm{H}, \mathrm{m}, 9 \times \mathrm{CH}_{2}\right), 1.62-1.66\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2}\right), 2.33(2 \mathrm{H}, \mathrm{t}, J 7.5$, $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2}\right), 2.58\left[2 \mathrm{H}, \mathrm{t}, J 7.5, \mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{12}\right], 2.92(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{NCH}_{3}\right), 6.97(1 \mathrm{H}, \mathrm{s}$, thienyl), $7.21-7.26(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.30-$ $7.36(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $7.53-7.56(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$.

Methyl 14-[2-(3-methylamino-5-phenyl)thieno]tetradecanoate 9 g . In accordance with the above general procedure, the residue obtained from a stirred solution of a mixture of compound 1a $(40 \mathrm{mg}, 0.179 \mathrm{mmol}), \mathrm{Hg}(\mathrm{OAc})_{2}(86 \mathrm{mg}, 0.270 \mathrm{mmol})$, (cyclopentadec-1-enyloxy)trimethylsilane ($64 \mathrm{mg}, 0.216 \mathrm{mmol}$) and TBAF ($56 \mathrm{mg}, 0.214 \mathrm{mmol}$) and MeOH was chromatographed to give title compound $\mathbf{9 g}(25 \mathrm{mg}, 32 \%)$ as a yellow solid, mp 40-41 ${ }^{\circ} \mathrm{C}$ (from n-hexane-EtOAc) (Found: C, $72.6 ; \mathrm{H}$, 9.1; $\mathrm{N}, 3.2$; S, 7.5. $\mathrm{C}_{26} \mathrm{H}_{39} \mathrm{NO}_{2} \mathrm{~S}$ requires C, 72.7; H, 9.15; N, 3.3; $\mathrm{S}, 7.5 \%$); $v_{\text {max }}$ (neat) $/ \mathrm{cm}^{-1} 3388,2912,1726,1566,1494,1454$, $1430,1386,1163$ and $752 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.25-1.38$ ($18 \mathrm{H}, \mathrm{m}, 9 \times \mathrm{CH}_{2}$), 1.62-1.64 ($4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2}$), $2.30(2 \mathrm{H}, \mathrm{t}$, $\left.J 7.5, \mathrm{CH}_{2} \mathrm{CO}_{2}\right), 2.58\left[2 \mathrm{H}, \mathrm{t}, J 7.5, \mathrm{CH}_{2}\left(\mathrm{CH}_{2}\right)_{12}\right], 2.92(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{NCH}_{3}\right), 3.66\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 6.96(1 \mathrm{H}, \mathrm{s}$, thienyl), $7.21-7.26$ $(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.30-7.36(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $7.53-7.56(2 \mathrm{H}, \mathrm{m}$, ArH).

2-\{2-[2-(3-Methylamino-5-phenyl)thieno]ethyl\}benzoic acid 10a. In accordance with the above general procedure, the residue obtained from a stirred solution of a mixture of compound

1a ($40 \mathrm{mg}, 0.179 \mathrm{mmol}$), $\mathrm{Hg}(\mathrm{OAc})_{2}(86 \mathrm{mg}, 0.270 \mathrm{mmol})$, (3,4-dihydronaphthalen-1-yloxy)trimethylsilane $(47 \mathrm{mg}, 0.215$ mmol) and TBAF ($56 \mathrm{mg}, 0.214 \mathrm{mmol}$) and a mixture of THF and water ($5: 1,10 \mathrm{~cm}^{3}$) was chromatographed to give title compound 10a ($28 \mathrm{mg}, 46 \%$) as a pale yellow solid, mp 173-174 ${ }^{\circ} \mathrm{C}$ (from $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{Et}_{2} \mathrm{O}$) (Found: C, 71.25; H, 5.6; $\mathrm{N}, 4.2 ; \mathrm{S}$, 9.5. $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{NO}_{2} \mathrm{~S}$ requires $\mathrm{C}, 71.2 ; \mathrm{H}, 5.7 ; \mathrm{N}, 4.15 ; \mathrm{S}, 9.5 \%$); $v_{\text {max }}$ (neat) $/ \mathrm{cm}^{-1} 2920,1576,1324,936,704$ and $690 ; \delta_{\mathrm{H}}(300$ $\mathrm{MHz} ; \mathrm{CDCl}_{3}+$ DMSO-d $\left._{6}\right) 2.86-2.91\left(5 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right.$ and $\left.\mathrm{NCH}_{3}\right), 3.21\left(2 \mathrm{H}, \mathrm{t}, J 7.6, \mathrm{CH}_{2}\right), 6.95(1 \mathrm{H}$, s, thienyl), $7.21-7.30$ ($5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), $7.42-7.45(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.53-7.56(2 \mathrm{H}, \mathrm{m}$, $\mathrm{ArH})$ and $7.98-8.01(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$.

Methyl 2-\{2-[2-(3-methylamino-5-phenyl)thieno]ethyl\}benzoate 10b. In accordance with the above general procedure, the residue obtained from a stirred solution of a mixture of compound $\mathbf{1 a}(40 \mathrm{mg}, 0.180 \mathrm{mmol}), \mathrm{Hg}(\mathrm{OAc})_{2}(86 \mathrm{mg}$, 0.270 mmol), (3,4-dihydronaphthalen-1-yloxy)trimethylsilane ($47 \mathrm{mg}, 0.215 \mathrm{mmol}$) and TBAF ($56 \mathrm{mg}, 0.214 \mathrm{mmol}$) and $\mathrm{MeOH}\left(2 \mathrm{~cm}^{3}\right)$ was chromatographed to give title compound 10b ($35 \mathrm{mg}, 56 \%$) as a pale yellow liquid (Found: C, $71.9 ; \mathrm{H}$, 6.05; $\mathrm{N}, 4.0 ; \mathrm{S}, 9.1 \mathrm{C}_{21} \mathrm{H}_{21} \mathrm{NO}_{2} \mathrm{~S}$ requires C, 71.8; $\mathrm{H}, 6.0 ; \mathrm{N}, 4.0$; $\mathrm{S}, 9.1 \%$); $v_{\text {max }}$ (neat) $/ \mathrm{cm}^{-1} 3392,2944,1715,1570,1501,1429$, 1392, 1253, 1189, 1072 and 755; $\delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 2.86-$ $2.91\left(5 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right.$ and $\left.\mathrm{NCH}_{3}\right), 3.20\left(2 \mathrm{H}, \mathrm{t}, J 7.6, \mathrm{CH}_{2}\right), 3.91$ $\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 6.69(1 \mathrm{H}, \mathrm{s}$, thienyl), $7.21-7.30(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$, $7.42-7.45(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}), 7.54-7.57(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and $7.91-$ 7.94 ($1 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$).

Desilylation with TBAF in the presence of phenylmethanethiol

To a mixture of $\mathbf{1 a}(40 \mathrm{mg}, 0.179 \mathrm{mmol})$ and $\mathrm{Hg}(\mathrm{OAc})_{2}(38 \mathrm{mg}$, 0.223 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(8 \mathrm{~cm}^{3}\right)$ was added (cyclohexen-1yloxy)trimethylsilane ($40 \mathrm{mg}, 0.236 \mathrm{mmol}$). The mixture was stirred for 5 min at rt , followed by addition of TBAF (62 mg , 0.237 mmol), and the mixture was stirred for an additional 1 h , followed by addition of phenylmethanethiol (28 mg , 0.224 mmol). The mixture was stirred for 30 min and worked up in the usual manner. Chromatography $(1 \times 20 \mathrm{~cm})$ of the residue with a mixture of EtOAc and n-hexane $(4: 1)$ as eluent gave S-benzyl 5-[2-(3-methylamino-5-phenyl)thieno]pentanoate $11(30 \mathrm{mg}, 42 \%)$ as a yellow liquid (Found: C, 69.9; H, 6.35; N, 3.6; S, 16.15. $\mathrm{C}_{23} \mathrm{H}_{25} \mathrm{NOS}_{2}$ requires C, $69.8 ; \mathrm{H}, 6.4 ; \mathrm{N}, 3.5$; S, $16.2 \%) ; v_{\max }$ (neat)/cm ${ }^{-1} 3392,2920,1686,1570,1501,1389$ and $755 ; \delta_{\mathrm{H}}\left(300 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 1.64-1.72\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 1.73-1.81$ $\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2}\right), 2.60\left(4 \mathrm{H}, \mathrm{m}, 2 \times \mathrm{CH}_{2}\right), 2.90\left(3 \mathrm{H}, \mathrm{s}, \mathrm{SCH}_{2}\right.$, and $\mathrm{NH}), 4.12\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 6.94(1 \mathrm{H}, \mathrm{s}$, vinyl), $7.19-7.36(8 \mathrm{H}$, $\mathrm{m}, \mathrm{ArH})$ and $7.52-7.55(2 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$.

Desilylation with TBAF in the presence of n-propylamine

To the mixture obtained by treatment of a mixture of $\mathbf{1 a}$ ($50 \mathrm{mg}, 0.224 \mathrm{mmol}$), $\mathrm{Hg}(\mathrm{OAc})_{2}(101 \mathrm{mg}, 0.317 \mathrm{mmol})$ and (cyclohexen-1-yloxy)trimethylsilane ($45 \mathrm{mg}, 0.266 \mathrm{mmol}$) with TBAF ($71 \mathrm{mg}, 0.272 \mathrm{mmol}$) as described above was added n-propylamine ($59 \mathrm{mg}, 0.998 \mathrm{mmol}$). The mixture was stirred for 24 h and worked up as usual. Chromatography ($1.5 \times 10 \mathrm{~cm}$) of the residue with a mixture of EtOAc and n-hexane $(4: 1)$ as eluent gave compound $9 \mathbf{9 a}(19 \mathrm{mg}, 29 \%$).

Desulfurization of 4a with Raney nickel

According to the documented procedure, a mixture of excess of Raney nickel and $\mathbf{4 a}(29 \mathrm{mg}, 0.107 \mathrm{mmol})$ in $\mathrm{MeOH}\left(8 \mathrm{~cm}^{3}\right)$ was stirred for 24 h at rt under hydrogen atmosphere, followed by filtration to remove the solids. The filtrate was washed with 20% aq. NaHCO_{3}, followed by evaporation in vacuo. Chromatography ($1 \times 30 \mathrm{~cm}$) of the residue using a mixture of EtOAc and n-hexane ($2: 1$) gave 1-methyl-8-(2-phenylethyl)azocin-2-one 14a $(n=4)(11 \mathrm{mg}, 0.045 \mathrm{mmol})$ as a colorless liquid (Found: C, 78.1; H, 9.4; $\mathrm{N}, 5.7 . \mathrm{C}_{16} \mathrm{H}_{23} \mathrm{NO}$ requires $\mathrm{C}, 78.3 ; \mathrm{H}, 9.45 ; \mathrm{N}$,
5.7%); $v_{\max }$ (neat) $/ \mathrm{cm}^{-1} 3488,2912,2864,1632,1450,1392$, $1235,1082,749$ and $698 ; \delta_{\mathrm{H}}\left(600 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.91-0.95(1 \mathrm{H}$, $\mathrm{m}), 1.35-1.37(1 \mathrm{H}, \mathrm{m}), 1.57-1.59(1 \mathrm{H}, \mathrm{m}), 1.67-1.71(2 \mathrm{H}, \mathrm{m})$, $1.80-1.88(3 \mathrm{H}, \mathrm{m}), 1.96-1.98(1 \mathrm{H}, \mathrm{m}), 2.26-2.29(3 \mathrm{H}, \mathrm{m})$, 2.52-2.56 ($1 \mathrm{H}, \mathrm{m}$), 2.70-2.73 ($1 \mathrm{H}, \mathrm{m}$), $2.81\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right)$, 3.75-3.80 ($1 \mathrm{H}, \mathrm{m}$, methine), 7.16-7.17 ($2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$), 7.19$7.22(1 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and 7.27-7.31 ($2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$); $\delta_{\mathrm{c}}(75 \mathrm{MHz}$; CDCl_{3}) 22.92, 24.35, $25.95\left(\mathrm{NCH}_{3}\right), 28.42,31.47$ (benzylic C), 33.02, 33.39, 33.83, 52.83 (C-8), 125.16, 127.40, 127.54, 140.07 and $176.00(\mathrm{C}=\mathrm{O}) ; m / z 245\left(\mathrm{M}^{+}, 56 \%\right), 202(7), 154$ (18), 148 (77), 140 (100), 132 (19), 126 (72), 91 (74). Continuous elution with the same solvent gave 1 -methyl-8-(2-phenylethylidene)-azocin-2-one 13a $(n=4)(6 \mathrm{mg}, 0.025 \mathrm{mmol})$ as a colorless liquid (Found: C, 78.9; H, 8.6; N, 5.75. $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{NO}$ requires C, $79.0 ; \mathrm{H}, 8.7 ; \mathrm{N}, 5.8 \%$); $v_{\text {max }}$ (neat) $/ \mathrm{cm}^{-1} 3424,2928,2864,1715$, $1635,1440,1376,1254,1235,1110,1072$ and $1021 ; \delta_{\mathrm{H}}(500$ $\mathrm{MHz} ; \mathrm{CDCl}_{3}$) $1.02-1.06(1 \mathrm{H}, \mathrm{m}), 1.61-1.68(2 \mathrm{H}, \mathrm{m}), 1.71-1.74$ $(1 \mathrm{H}, \mathrm{m}), 1.80-1.85(1 \mathrm{H}, \mathrm{m}), 2.03-2.06(1 \mathrm{H}, \mathrm{m}), 2.22-2.24$ ($2 \mathrm{H}, \mathrm{m}$), 2.43-2.49 ($2 \mathrm{H}, \mathrm{m}$), 2.55-2.61 ($1 \mathrm{H}, \mathrm{m}$), 2.66-2.69 $(1 \mathrm{H}, \mathrm{m}), 2.96\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right), 5.32-5.35(1 \mathrm{H}, \mathrm{m}$, vinyl), $7.10-$ $7.15(3 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$ and 7.19-7.24 ($2 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$); $\delta_{\mathrm{c}}(75 \mathrm{MHz}$; CDCl_{3}) $23.97,24.39,28.68,30.69,32.05,32.63,33.77$ (C-7), 122.94, 125.15, 127.21, 127.48, 139.04 (C-8) and 139.91 (C-1 of Ph group); $m / z 243$ (${ }^{+}, 70 \%$), 215 (20), 174 (41), 146 (64), 138 (26), 124 (100). The ${ }^{13} \mathrm{C}$ NMR absorption corresponding to the amide carbonyl carbon was not observed.

General procedure for the completely reductive desulfurization of thienolactams 4a-d

Compound 4 was treated with excess of Raney nickel as described in the preparation of compounds 13a and 14a. A mixture of the incompletely reduced products 13 and 14 , obtained by chromatography using a mixture of EtOAc and n-hexane (2:1), was subsequently treated with $\mathrm{PtO}_{2}(3 \mathrm{wt} \%)$ in HOAc $\left(5 \mathrm{~cm}^{3}\right)$ for an appropriate time at rt. The acids were filtered off and the filtrate was neutralized with 20% aq. NaHCO_{3}, which was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(3 \times 20 \mathrm{~cm}^{3}\right)$. The extracts were dried over MgSO_{4}. Removal of the solvent in vacuo, followed by chromatography ($1 \times 15 \mathrm{~cm}$) of the residue with a mixture of EtOAc and n-hexane ($2: 1$), gave lactams 15a-d.

8-(2-Cyclohexylethyl)-1-methylazocin-2-one 15a. In accordance with the above general procedure, the incompletely reduced products obtained from $\mathbf{4 a}(28 \mathrm{mg}, 0.103 \mathrm{mmol})$ and excess of Raney nickel were treated with $\mathrm{PtO}_{2}(0.8 \mathrm{mg})$ in HOAc for 24 h and the mixture was worked up. Chromatography of the residue gave title compound $\mathbf{1 5 a}(15 \mathrm{mg}, 58 \%)$ as a colorless liquid (Found: C, 76.3; H, 11.6; N, 5.4. $\mathrm{C}_{16} \mathrm{H}_{29} \mathrm{NO}$ requires C, $76.4 ; \mathrm{H}, 11.6 ; \mathrm{N}, 5.6 \%$); $v_{\text {max }}$ (neat) $/ \mathrm{cm}^{-1} 3344,2912,2848,1731$, $1629,1446,1392,1258,1133$ and $1075 ; \delta_{\mathrm{H}}\left(600 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ 0.85-0.99 ($3 \mathrm{H}, \mathrm{m}$), 1.13-1.25 ($8 \mathrm{H}, \mathrm{m}$), 1.33-1.40 ($1 \mathrm{H}, \mathrm{m}$), $1.41-1.49(1 \mathrm{H}, \mathrm{m}), 1.59-1.80(8 \mathrm{H}, \mathrm{m}), 1.85-1.92(1 \mathrm{H}, \mathrm{m})$, 1.92-1.99 ($1 \mathrm{H}, \mathrm{m}$), 2.38-2.45 ($1 \mathrm{H}, \mathrm{m}, \mathrm{COCH}_{2}$), 2.61-2.68 $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{COCH}_{2}\right), 2.71\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right)$ and $3.79-3.84(1 \mathrm{H}, \mathrm{m}$, methine); $m / z 251\left(\mathrm{M}^{+}, 18 \%\right), 208(12), 166$ (47), 154 (43), 140 (100), 112 (15).

12-(2-Cyclohexylethyl)-1-methylazacyclododecan-2-one 15b. In accordance with the above general procedure, the incompletely reduced products obtained from $\mathbf{4 b}(55 \mathrm{mg}, 0.17$ $\mathrm{mmol})$ and excess of Raney nickel were treated with PtO_{2} $(1 \mathrm{mg})$ in HOAc for 24 h . The mixture was worked up. Chromatography of the residue gave title compound $\mathbf{1 5 b}(34 \mathrm{mg}$, 66%) as a colorless liquid (Found: C, 78.1; H, 12.05; N, 4.4. $\mathrm{C}_{20} \mathrm{H}_{37} \mathrm{NO}$ requires C, $78.1 ; \mathrm{H}, 12.1 ; \mathrm{N}, 4.55 \%$); $v_{\text {max }}$ (neat) $/ \mathrm{cm}^{-1}$ 3344, 2912, 2848, 1750, 1629, 1440 and 1395; $\delta_{\mathrm{H}}(600 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right)$ 0.80-0.91 ($4 \mathrm{H}, \mathrm{m}$, conformer B), $1.05-1.12(4 \mathrm{H}, \mathrm{m}$, conformer A), 1.13-1.52 ($22 \mathrm{H}, \mathrm{m}$), 1.53-1.63 ($3 \mathrm{H}, \mathrm{m}$), 1.71-
$1.90(2 \mathrm{H}, \mathrm{m}), 1.97-2.03\left(1 \mathrm{H}, \mathrm{m}, \mathrm{COCH}_{2}\right.$ of conformer A), $2.12-2.20\left(1 \mathrm{H}, \mathrm{m}, \mathrm{COCH}_{2}\right.$ of conformer B$), 2.61-2.67(1 \mathrm{H}, \mathrm{m}$, COCH_{2} of conformer A), $2.72\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right.$ of conformer B), $2.79\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right.$ of conformer A), 2.79-2.83 (1 H, m, COCH_{2} of conformer B), 3.74-3.76 (1 H, m, methine of conformer B) and 4.71-4.75 ($1 \mathrm{H}, \mathrm{m}$, methine of conformer A).

14-(2-Cyclohexylethyl)-1-methylazacyclotetradecan-2-one

15c. In accordance with the above general procedure, the incompletely reduced products obtained from $4 c(47 \mathrm{mg}$, 0.13 mmol) and excess of Raney nickel were treated with PtO_{2} (1 mg) in HOAc for 24 h . The mixture was worked up. Chromatography of the residue gave title compound $\mathbf{1 5 c}(19 \mathrm{mg}, 43 \%)$ as a colorless liquid (Found: C, 78.7; H, 12.3; N, 4.1. $\mathrm{C}_{22} \mathrm{H}_{41} \mathrm{NO}$ requires $\mathrm{C}, 78.7 ; \mathrm{H}, 12.3 ; \mathrm{N}, 4.2 \%$); $v_{\max }$ (neat) $/ \mathrm{cm}^{-1} 3344,2912$, 2848, 1728, 1635, 1446 and 1395; $\delta_{\mathrm{H}}\left(600 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 0.80-$ $0.91(5 \mathrm{H}, \mathrm{m}), 1.13-1.25(7 \mathrm{H}, \mathrm{m}), 1.28-1.49(19 \mathrm{H}, \mathrm{m}), 157-$ $1.63(3 \mathrm{H}, \mathrm{m}), 1.81-1.89(1 \mathrm{H}, \mathrm{m}$, conformer B$), 2.01-2.08(1 \mathrm{H}$, m , conformer A), 2.11-2.17 ($1 \mathrm{H}, \mathrm{m}, \mathrm{COCH}_{2}$ of conformer A), 2.17-2.22 (1 H, m, COCH_{2} of conformer B), $2.54-2.61(1 \mathrm{H}, \mathrm{m}$, COCH_{2} of conformer A), $2.61-2.66\left(1 \mathrm{H}, \mathrm{m}, \mathrm{COCH}_{2}\right.$ of conformer B), $2.70\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right.$ of conformer A), $2.76(3 \mathrm{H}, \mathrm{s}$, NCH_{3} of conformer B), 3.71-3.77 ($1 \mathrm{H}, \mathrm{m}$, methine of conformer A) and 4.66-4.73 (1 H, m, methine of conformer B); m/z $335\left(\mathrm{M}^{+}, 7 \%\right), 224$ (100), 154 (14).

8-(2-Cyclohexylethyl)azocin-2-one derivative 15d. In accordance with the above general procedure, the incompletely reduced products obtained from $\mathbf{4 d}(115 \mathrm{mg}, 0.21 \mathrm{mmol})$ and excess of Raney nickel were treated with $\mathrm{PtO}_{2}(3 \mathrm{mg})$ in HOAc for 4 days. The mixture was worked up as usual. Chromatography of the residue gave title compound $\mathbf{1 5 d}(90 \mathrm{mg}, 81 \%)$ as a colorless liquid (Found: C, 82.25; H, 12.01; N, 2.4. $\mathrm{C}_{37} \mathrm{H}_{65} \mathrm{NO}$ requires $\mathrm{C}, 82.3 ; \mathrm{H}, 12.1 ; \mathrm{N}, 2.6 \%$); $v_{\max }$ (neat) $/ \mathrm{cm}^{-1} 13344$, 2928, 2240, 1715, 1642, 1443 and 1373; $\delta_{\mathrm{H}}\left(600 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right)$ $0.65(3 \mathrm{H}, \mathrm{s}), 0.73(3 \mathrm{H}, \mathrm{s}), 0.85-0.87(9 \mathrm{H}, \mathrm{m}), 0.88-0.90(4 \mathrm{H}$, m), 0.95-1.03 (3 H, m), 1.08-1.16 (7 H, m), 1.17-1.28 (8 H, m), $1.30-1.39(6 \mathrm{H}, \mathrm{m}), 1.41-1.57(6 \mathrm{H}, \mathrm{m}), 1.58-1.64(3 \mathrm{H}, \mathrm{m})$, 1.67-1.73 ($2 \mathrm{H}, \mathrm{m}$), 1.79-1.85 ($2 \mathrm{H}, \mathrm{m}$), 1.93-2.01 ($1 \mathrm{H}, \mathrm{m}$), 2.12-2.17 (1 H, m), 2.19-2.26 (1 H, m), 2.31 (1 H, dd, J 13.1, $\left.7.2, \mathrm{COCH}_{2}\right), 2.69\left(1 \mathrm{H}, \mathrm{dd}, J 11.9,9.6, \mathrm{COCH}_{2}\right), 2.95(3 \mathrm{H}, \mathrm{s}$, NCH_{3} of conformer B), $2.96\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{3}\right.$ of conformer A), 4.90-4.91 ($1 \mathrm{H}, \mathrm{m}$, methine of conformer B) and 5.21-5.25 $(1 \mathrm{H}, \mathrm{m}$, methane of conformer B).

Acknowledgements

This work was supported by Korea Research Foundation Grant (KRF-2000-DP0261).

References

1 Refer to the following monograph for a list of both general and specific articles: M. A. Ogliaruso and J. F. Wolfe, in Synthesis of Lactones and Lactams, ed. S. Patai and Z. Rappoport, Wiley, New York, 1993.
2 (a) P. Cefelin, A. Frydrychova, J. Labsky, P. Schmidt and J. Sebenda, Collect. Czech. Chem. Commun., 1967, 32, 2787; (b) A. Bladé-Fort, Tetrahedron Lett., 1980, 21, 2443; (c) S. E. de Laszlo, S. V. Ley and R. A. Porter, J. Chem. Soc., Chem. Commun., 1986, 344; (d) R. Pellegata, M. Pinza and G. Pifferi, Synthesis, 1978, 614.

3 (a) R. Fuhrmann, A. A. Tunick and S. Sifniades, U.S. Pat., 3922 265, 1975 (Chem. Abstr., 1976, 84, 121193h); (b) T. Sundararamaiak, S. K. Ramraj, K. L. Rao and V. V. Bai, J. Indian Chem. Soc., 1976, 53, 664; (c) I. Sakai, N. Kawabe and M. Ohno, Bull. Chem. Soc. Jpn., 1979, 52, 3381.
4 (a) B. M. Trost, M. Vaultier and M. L. Santiago, J. Am. Chem. Soc., 1980, 102, 7929; (b) T. Duong, R. H. Prager, J. M. Tippett, A. D. Ward and D. I. B. Kerr, Aust. J. Chem., 1976, 29, 2667; (c) H. Shechter and J. C. Kirk, J. Am. Chem. Soc., 1951, 73, 3087; (d) R. T. Conley, J. Org. Chem., 1958, 23, 1330; (e) L. Ruzicka, M. W. Goldberg, M. Hürbin and H. A. Boeckenoogen, Helv. Chim. Acta, 1933, 16, 1323.
5 (a) O. Yonemitsu, P. Cerutti and B. Witkop, J. Am. Chem. Soc., 1966, 88, 3941; (b) O. Yonemitsu, T. Tokuyama, M. Chaykovsky and B. Witkop, J. Am. Chem. Soc., 1968, 90, 776.

6 A. K. Bose, W. A. Hopffmanm and M. S. Manhas, J. Chem. Soc., Perkin Trans. 1, 1976, 2343.
7 D. St. C. Black and L. M. Johnstone, Aust. J. Chem., 1984, 37, 599.

8 B. S. Kim and K. Kim, J. Org. Chem., 2000, 65, 3690.
9 (a) L. I. Beleńkii and Ya. L. Gol'dfarb, in The Chemistry of Heterocyclic Compounds, ed. A. Weissberger and E. C. Taylor, Wiley, New York, 1985, vol. 44, pp. 457-569; (b) S. Z. Taits, O. A. Kalinovskii, V. S. Bogdanov and Ya. L. Gol'dfarb, Khim. Geterotsikl. Soedin., 1972, 2, 170.
10 T. V. RajanBabu, J. Org. Chem., 1984, 49, 2083.
11 (a) Z. A. Fataftah, I. E. Kopka and M. W. Rathke, J. Am. Chem. Soc., 1980, 102, 3959; (b) E. J. Corey and A. W. Gross, Tetrahedron Lett., 1984, 25, 495; (c) H. O. House, M. Gall and H. D. Olmstead, J. Org. Chem., 1971, 36, 2361.

12 G. S. Hammond and C. S. Wu, J. Am. Chem. Soc., 1973, 95, 8215.

13 (a) I. Kuwajima and E. Nakamura, J. Am. Chem. Soc., 1975, 97, 3257; (b) I. Kuwajima, E. Nakamura and M. Shimizu, J. Am. Chem. Soc., 1982, 104, 1025.
14 (a) M. Nagai, H. Urimoto, K. Uetake, N. Sakikawa and R. D. Gonzalez, Bull. Chem. Soc. Jpn., 1989, 62, 557; (b) S. Becker, Y. Fort, R. Vanderesse and P. Caubere, J. Org, Chem., 1989, 54, 4848; (c) Ya. L. Gol'dfarb, B. P. Fabrichnyi and I. F. Shalavina, Tetrahedron, 1962, 18, 21; (d) G. Borgen and F. Rise, Magn. Reson. Chem., 1993, 31, 51; (e) G. Borgen, J. Dale and F. Rise, Magn. Reson. Chem., 1993, 31, 855; (f) G. Borgen, J. Dale and F. Rise, Magn. Reson. Chem., 1996, 34, 289.
15 Ya. L. Gol'dfarb, B. P. Farbrichnyi and I. F. Shalavina, Zh. Obshch. Khim., 1961, 31, 315.

